
Chemical Heat Pumps

Vivek P. Utgikar1, Aman Gupta1, Brian M. Fronk2, Paul 
Armatis2, and Piyush Sabharwall3

1

1University of Idaho, Moscow, ID 83844
(208) 885-6970, vutgikar@uidaho.edu
2Oregon State University, Corvallis, OR 83844
(541) 737-3952, brian.fronk@oregonstate.edu
3Idaho National Laboratory, Idaho Falls, ID 83415
(208) 526-6494, piyush.Sabharwall@inl.gov
p

INEST Nuclear Hybrid Energy Systems Workshop
July 24-25, 2013, Idaho Falls, ID, USA

Heat Storage for Gen IV Reactors for Variable Electricity from 
Base-Load Reactors

Idaho Falls, ID
July 23-24, 2019



Contents
• Thermal Energy Storage Technologies
• Motivation: Industrial demand for elevated 

temperature heat supply
• Temperature Upgrading Technologies
• Working Pairs & CHP operating principles
• Temperature Amplification – Exothermic 

Hydration Process
• Advantages/disadvantages of CHPs
• Ongoing work and Future Direction

2



Thermal Energy Storage (TES) 
Technologies

3

Sarbu and Sebarchievici, Sustainability, 2018, 10, 191

Sensible Heat Latent Heat Thermochemical



Comparison of TES Technologies

4

Liu et al, Int. J. Energy Res., 2018, 42, 4546



Energy Storage Density Diagram
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Process Heat Applications
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Process Heat Applications

McMillan et al., 2016, NREL/TP-6A50-66763
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Motivation
In order to realize the benefits of nuclear hybrid 

energy systems with the current LWR reactor fleets, 
selection and development of a complimentary 
temperature upgrading technology is necessary

• Potential of production of synthetic fuels based on 
indigenous carbon sources using nuclear energy

• Process temperature requirements: pyrolysis and 
hydrotreatment/hydrocracking – 500oC; gasification 
and reforming – 800oC

• Conventional LWRs outlet temperatures:~300°C

8



Technology Requirements and Selection for 
LWR Temperature Upgrading

• Ability to upgrade LWR outlet temperature to 
levels required for process heat applications 
(500-800°C)

• Ability to integrate with nuclear hybrid energy 
systems (tolerant of dynamic or transient 
operation)

• Economic viability, reliability, and operational 
safety

• Direct utilization of LWR heat with minimal 
energy conversion steps
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Temperature Upgrading Technologies
• Mechanical Heat Pumps

– Reverse power cycle (Rankine, Brayton)
– Low temperature upgrade (up to 200°C)
– Requires mechanical power source

• Vapor Absorption Heat Pumps
– Low temperature upgrade (up to 260°C)
– Driven by thermal energy sources
– Higher efficiency with few moving parts

• Solid State Heat Pumps
– Use magnetic or thermoelectric effects to achieve thermal energy transport
– Require electrical power input
– Best suited for refrigeration and space heating and cooling applications

• Chemical Heat Pumps (CHPs)
– Use reversible chemical reactions to change the temperature level of the 

thermal energy stored by the chemicals
– High temperature upgrade possible
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Chemical Heat Pump Types

• Sorption processes
– Heating and cooling applications
– Heat and mass transfer limitations
– Relatively low temperature (range)

• Chemical reactions
– Heating and cooling applications
– Heat and mass transfer limitations
– Storage of medium and high grade heat 

(>400°C)
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Overview of working pairs
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REACTANTS

Sorption Processes
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Cot-Gores et al, Renewable Sustainable Energy Rev., 2012, 16, 5207



Advantages of CHPs
• Operating temperature range higher than mechanical heat pumps
• Reversible reactions (oxidation reactions have higher energy density 

but are irreversible)
• Possible to operate without mechanical energy input (Hasatani 1992)
• Energy storage potential

– High energy density relative to sensible or latent heat storage (large 
energy storage per unit mass)

– Energy storage without heat loss as in case of sensible or latent heat 
storage (no insulation required as energy is stored as chemical potential 
energy)

– Potential to operate with thermal energy at various temperatures 
(Hasatani 1992)

• Reaction materials metal oxides/carbonates tend to be inexpensive 
and non-toxic
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Disadvantages/Issues

• Inorganic solid/gas CHPs operate as batch 
processes

• Heat transfer limitations associated with 
packed bed reactors and solid/gas phase 
reactions

• Materials stability and durability issues
• Transient systems with temperature 

fluctuations leading to generation of 
thermodynamic irreversibility
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CHP Operation

15

Upgraded heat 
stream (steam 
production or 
input to other 
thermal process)

Heat 
rejection

Heat addition at 
TM

TL TM TH

PH

PL

ln(P)

CHP



For Continuous Operation: Multiple 
Reactors
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More reactors could also provide sensible heat recuperation to improve heat 
integration, reducing the thermodynamic losses.

Arjmand et al, Int. J. Energy Res., 2013, 37, 1122



Dehydration-Hydration CHP

Schematics of component of CHP system Heat pump cycle on Clausius-Clapeyron diagram 
showing equilibrium of CaO/Ca(OH)2 and H2O(L)/H2O(G)
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Research Effort and Collaboration

• University of Idaho
– Transient heat and mass transfer and reaction kinetics of CaO
– Material characterization of CaO

• Oregon State University
– Transient high temperature heat pump performance
– Model and evaluate entire system
– Design, build, and test absorption heat pump subsystem

• Idaho National Laboratory
– Facilitate university collaboration
– Enable system integration tests
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Materials and Methods

Weighing Scale

Vacuum pump

Condenser/EvaporatorReactor

Band Heater

Thermocouple

Valve Pressure gauge

Cooling coil
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P

• Reactor Dimensions
ID – 2.5”
Height – 9”

• Condenser/Evaporator 
Dimensions

ID – 4.4”
Height – 8”
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Materials and Methods
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Materials and Methods
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Figure 7 : Schematic of Experimental Setup
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Preliminary Results

Figure 8 : Temperatures and unconverted mole fraction 
during dehydration reaction
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Time 
(min)

Weighing Scale   Reading (g) Unconverted 
mole fraction

Reactor Condenser

0 0 0 0

118 -3 2 0.95

120 -8 7 0.88

124 -15 13 0.78

126 -30 28 0.57

128 -34 32 0.51

132 -51 48 0.27

135 -60 57 0.14

140 -68 64 0.03

TABLE III. Change in the reading of weighing 
scale and unconverted mole fraction with time 
during dehydration process
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Figure 10 : Temperature profile during hydration process

CaO(s) + H2O(g) ⇋ Ca(OH)2(s) + Δ�𝐻𝐻r Δ�𝐻𝐻r = 104.4 kJ mol-1
• Hydration



Observations and Conclusions
• Dehydration process

– Nearly complete decomposition of Ca(OH)2 in ~150 min
• Hydration process

– Temperature increase due to exothermic recombination 
of CaO and H2O observed

• Absorber-Desorber Modeling
– Thermal pathway increases exergetic efficiency to >80%
– Absorber inlet conditions greatly impact performance
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Future Work

• Experimental investigation of performance 
change for repeated dehydration/hydration 
cycles

• Validation of experimental data with theoretical 
analysis

• Dynamic chemical/absorption heat pump model 
development

• Experimental investigations of absorber-desorber
system
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